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Summary

Maximum-likelihood analysis (via LOD score) provides
the most powerful method for finding linkage when the
mode of inheritance (MOI) is known. However, because
one must assume an MOI, the application of LOD-score
analysis to complex disease has been questioned. Al-
though it is known that one can legitimately maximize
the maximum LOD score with respect to genetic param-
eters, this approach raises three concerns: (1) multiple
testing, (2) effect on power to detect linkage, and (3)
adequacy of the approximate MOI for the true MOI.
We evaluated the power of LOD scores to detect linkage
when the true MOI was complex but a LOD score anal-
ysis assumed simple models. We simulated data from 14
different genetic models, including dominant and reces-
sive at high (80%) and low (20%) penetrances, inter-
mediate models, and several additive two-locus models.
We calculated LOD scores by assuming two simple mod-
els, dominant and recessive, each with 50% penetrance,
then took the higher of the two LOD scores as the raw
test statistic and corrected for multiple tests. We call this
test statistic “MMLS-C.” We found that the ELODs for
MMLS-C are x80% of the ELOD under the true model
when the ELOD for the true model is x3. Similarly, the
power to reach a given LOD score was usually x80%
that of the true model, when the power under the true
model was x60%. These results underscore that a crit-
ical factor in LOD-score analysis is the MOI at the linked
locus, not that of the disease or trait per se. Thus, a
limited set of simple genetic models in LOD-score anal-
ysis can work well in testing for linkage.
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Introduction

There has been discussion recently about the methods
that one should use to analyze human linkage data. One
school of thought is that methods that use only affected
family members—methods such as affected sib pair
(ASP) (e.g., see Haseman and Elston 1972; Suarez and
Van Eerdewegh 1984), affected pedigree member (APM)
(Weeks and Lange 1988), or nonparametric linkage
(NPL) (Kruglyak and Lander 1995)—are the most ap-
propriate methods to use. We have argued that maxi-
mum-likelihood methods, which use all the data avail-
able, often remain the most powerful and versatile
methods available (Greenberg et al. 1996)

The most important perceived limitation of the max-
imum-likelihood or LOD-score (Z) method is that the
user must specify genetic parameters—particularly the
mode of inheritance (MOI)—in order to use the method.
However, during the last decade, numerous investigators
have shown that one can circumvent this difficulty by
maximizing the maximum Z (Zmax) with respect to the
genetic parameters (e.g., see Clerget-Darpoux et al.
1986; Elston 1989; Greenberg 1989; Clerget-Darpoux
and Bonaı̈ti-Pellié 1992; Hodge and Elston 1994). This
means that, in the search for disease loci, one can analyze
the data for linkage under several genetic models, then
use the highest Zmax as the test statistic for linkage.

There are three legitimate concerns about this ap-
proach, which is called “MMLS” (maximized maximum
LOD score) (Greenberg 1989), or “mod scores” (Cler-
get-Darpoux et al. 1986). First, by varying the genetic
parameters or analysis model (AM), one is performing
multiple tests, with a resultant increase in the probability
of type I error. Second, there is an unknown effect on
statistical power, as a result of correction for that in-
crease in type I error. The third and critical concern can
be phrased as a question: Even if one is willing to assume
several inheritance models, is there reason to believe that
any of them approximate the true MOI? For example,
the true MOI might involve several loci that act in an
additive fashion. What is the effect on power when one
assumes a simple Mendelian model but the true model
is far from simple dominant or recessive?
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Recently, we partially answered the first question by
quantifying the increase in type I error when testing mul-
tiple models. We showed that, if one performs a linkage
analysis twice, once assuming dominant and once as-
suming recessive MOI, with an arbitrary penetrance of
50%, then the Z threshold for significance must be in-
creased by, at most, ∼.3 for (Hodge et al.Z X 3.0max

1997). This conservative correction is more stringent
than necessary, in most of the cases that we examined.
As a result of this work, we suggested following a simple
approach to linkage analysis when the MOI is unknown,
an approach designed to extract a maximum amount of
information from the data while minimizing the increase
in type I error: Analyze the data twice—once with dom-
inant inheritance assumed and once with recessive in-
heritance assumed, each at some arbitrary penetrance,
such as .5; choose the larger of the two resultant Zmax

values; then ‘‘correct’’ the result by subtracting a cor-
rection factor, to allow for the fact that two tests have
been performed. This approach represents a particularly
simple version of MMLS, since it maximizes Zmax over
only two distinct genetic models. Elsewhere, it also has
been shown that, when there is linkage, the change in
Zmax is usually relatively modest as the penetrance is
varied and that relatively little information is lost by
assuming a single penetrance (Greenberg 1989). How-
ever, questions of how this simple MMLS procedure af-
fects the power to detect linkage remain unanswered.

This issue of power represents the focus of the present
article. We address the remaining two questions men-
tioned above: What are the effects, on power, of (1)
correcting for multiple testing and (2) assuming a simple
MOI when the true MOI is complex?

We already have evidence that assuming that there are
simple modes of inheritance in linkage analysis provides
a robust approximation. For example, there is little effect
on the Z if one assumes a single-locus model when the
true MOI is a two-locus epistatic model, provided that
one assumes approximately the correct MOI at the locus
linked to the marker (Greenberg and Hodge 1989;
Greenberg 1990; Vieland et al. 1992; Goldin and Weeks
1993; Hodge 1998; Leder et al. 1998). That is, if one
designates dominant/recessive correctly at the linked lo-
cus, the effect of the second locus can be subsumed in
‘‘penetrance,’’ with relatively little loss of power to de-
tect linkage. The question remains, What happens if the
true model is ‘‘intermediate’’ or ‘‘additive’’ (defined
below)?

To answer our two questions, we undertook a sim-
ulation study to examine how the simple MMLS ap-
proach described above affects the power to detect link-
age, under a variety of true genetic models. We (1)
quantify the effect of correction for multiple testing on
power and (2) examine the power to detect linkage when
one assumes two simple Mendelian models for the link-

age analysis but the true models are intermediate or
additive.

Methods

In the present study, we are comparing the power re-
sulting from the simple MMLS method versus that re-
sulting from analysis under the true model—that is, a
‘‘gold standard’’ that represents an upper limit on Z.
We are not comparing MMLS directly with any other
method of linkage analysis, such as one of the affecteds-
only methods. A study is currently in progress on the
power of the affecteds-only methods, a study similar to
what we have done here for the maximum-likelihood
method.

Generating Models (GMs)

We simulated data under several different genetic
models. There was always one disease locus linked to
the marker with recombination fraction � .01:

1. Dominant with 20% and 80% penetrance. The
disease-allele frequencies were always .01. These GMs
are denoted “D20” and “D80.”

2. Recessive with 20% and 80% penetrance. The dis-
ease-allele frequencies were always .01. These GMs are
denoted “R20” and “R80.”

3. Intermediate (i.e., when the heterozygote pene-
trance, f2, is between the two homozygote penetrances,
f1 and f3). Always, and ; then f2 is variedf � 90% f � 01 3

over 10%, 30%, 50%, and 80%. The frequency of the
disease allele was .01. These models are denoted
“Int10,” “Int30,” “Int50,” and “Int80.” We chose the
intermediate model because our other simulations
showed that, whereas, in a model in which f1 is high and

(i.e., a simple recessive), linkage is easy tof � f � 02 3

detect, in a model in which f1 is high but f2 is low (say,
5%–15%) but not zero, linkage is much more difficult
to detect. This was borne out in the current simulations
(see Results).

4. Additive. These two-locus models require that the
count of disease alleles at two loci reach some specified
number in order for a person to be affected. Only one
of the two disease loci is linked to the marker. We in-
vestigated two different sets of ‘‘additive’’ models. The
first set, denoted ‘‘additive3,’’ required at least three dis-
ease alleles at the two loci. The disease-allele frequency
at the linked locus was fixed at .01 and that at the un-
linked locus was varied over .01, .05, and .10. (This
model resembles a two-locus epistatic model in which
both loci are dominantly inherited, except that the dou-
ble heterozygote is unaffected because there are a total
of only two disease alleles present at the two loci.) Table
1 shows the penetrance matrix for this model. The sec-
ond set of additive models, denoted ‘‘additive2,’’ was
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Table 1

Additive3

PENETRANCE VALUE FORa

AA Aa aa

BB 1.0 1.0 .0
Bb 1.0 .0 .0
bb .0 .0 .0

a Capital letters denote disease alleles.

Table 2

Additive2

PENETRANCE VALUE FORa

AA Aa aa

BB 1.0 1.0 1.0
Bb 1.0 1.0 .0
bb 1.0 .0 .0

a Capital letters denote disease alleles.

the same as the first, except that it required at least two
disease alleles at the two loci; the disease-allele frequency
at the linked locus was fixed again at .01 and that at
the unlinked locus was varied again over .01, .05, and
.10. Table 2 shows the penetrance matrix for this model.

Thus we examined a total of 14 GMs: 2 dominant, 2
recessive, 4 intermediate, 3 additive3, and 3 additive2
models.

Data Simulation

Data were simulated by means of a modification of
our well-tested two-locus simulation program (Green-
berg 1989; Greenberg and Doneshka 1996). The mod-
ification allows independent penetrance specification for
each of the nine possible genotypes in a two-locus model
with two alleles (disease and normal) at each locus (see
below). Nuclear families were simulated according to a
well-characterized family-size distribution (Cavalli-
Sforza and Bodmer 1971, pp 310–313), and there had
to be at least two siblings affected in order for a family
to be ascertained. One thousand data sets of 20 families
each were simulated for each set of generating param-
eters—that is, for each of our 14 GMs.

AMs

One of the objects of this study was to quantify the
power to detect linkage when data are generated from
‘‘complex’’ models of inheritance but are analyzed on
the assumption that the models are relatively simple.
Therefore, the simulated data were analyzed for linkage
under the assumption of simple dominant inheritance,
with 50% penetrance (called “D50 analysis”), and under
the assumption of simple recessive inheritance, also with
50% penetrance (R50). (This is our suggested approach,
the simple MMLS approach, described above.) The re-
sultant Zmax values were maximized over the ‘‘domi-
nance model’’; that is, they were maximized with respect
to R50 versus D50. Thus, after analysis of a data set by
use of D50 and R50, the larger of the two Zmax values
was taken as the raw MMLS score. Then, because we
were performing linkage analysis under multiple (two)
models, we also corrected for the increase in type I error.
When the Z is maximized over the dominance model,

as here, the Z threshold for significance needs to be
increased by a correction factor, or, equivalently, the test
statistic itself, maximized Zmax, needs to be decreased by
this correction factor, which is what we did for the pre-
sent study.

In a previously published article, we showed that a
correction factor of .3 appears to be conservative, for

. The actual correction factor that we usedZ X ∼ 3.0max

depended on the Zmax itself (Hodge et al. 1997). In prac-
tice, to correct for multiple tests, we subtracted from the
maximized Zmax a correction factor that varied from .24,
for , to .3, for . This correctionZ X 0.59 Z x 3.0max max

factor is taken from table 4 in Hodge et al. (1997). The
resultant score is the ‘‘corrected MMLS score’’ (MMLS-
C), and this is the test statistic that we report in the
Results section below.

We note that the correction factor was applied sep-
arately to the maximized Zmax for each data set. This
means that no simple relationship exists between the
ELODs for MMLS-C and the ELODs for the separate
D50 or R50 analyses. For GMs for which either the D50
analysis or the R50 analysis is consistently superior to
the other (e.g., for the D80 GM, see table 3), the ELOD
for the ‘‘raw’’ (uncorrected) MMLS will equal the ELOD
for the superior analysis, and therefore the ELOD for
MMLS-C will be ∼0.3 less than the ELOD for the su-
perior analysis. However, when the two AMs produce
Z values that are relatively close to each other (e.g., for
the Int10 GM), the higher Zmax value may, for any in-
dividual data set, occur under either AM.

Finally, all data sets were analyzed for linkage under
the true model—that is, the GM. The Zmax from this
analysis is reported as the ‘‘TRUE’’ score.

Thus, we calculate and report two different test sta-
tistics: MMLS-C and TRUE. Calculations were per-
formed by means of LIPED (Ott 1974), for all the single-
locus models (i.e., those with prefixes “D,” “R,” and
“Int”), and by means of TMLINK ( Lathrop and Ott
1990), for exact calculation of the Z for the additive
models.

Calculation and Presentation of ELOD and Power
Results

ELODs were calculated by summation of the 1,000
values of the particular test statistic and then division
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Table 3

ELODs for GMs under Different AMs

GM

AM

D50 R50 MMLS-C TRUE

Simple Mendelian:
D20 3.0 1.8 2.8 3.5
D80 9.5 .5 9.2 10.6
R20 5.5 10.1 9.9 10.2
R80 8.1 14.6 14.5 15.6

Intermediate:a

.1 2.8 2.5 2.8 3.5

.3 4.0 1.7 3.8 4.3

.5 6.0 1.3 5.7 6.0

.8 9.7 .5 9.4 10.7
Additive3b

.01 5.1 6.8 6.5 6.8

.05 3.9 3.3 3.8 4.3

.10 4.1 2.7 3.9 4.3
Additive2b

.01 4.7 2.1 4.5 5.2

.05 1.7 .5 1.4 1.8

.10 .6 .3 .4 .7

a Values shown (i.e., .1, .3 .5, and .8) are f2; f1 is fixed
at .9.

b Values shown (i.e., .01, .05, and .10) are gene fre-
quency at the unlinked locus.

of the total by 1,000. We show these ELODs for the
two test statistics being compared (MMLS-C and
TRUE). (In the ELOD tables below, we also show the
original D50 and R50 scores, for comparison.) We note
that the ELOD for the ‘‘raw’’ (uncorrected) MMLS score
would usually fall between the larger ELOD for the two
AMs and the ELOD for the TRUE score; that is

. Sincemax E[D50,R50] X E[raw MMLS] X E[TRUE]
, we can see theE[MMLS-C] ≈ E[raw MMLS] � 0.30

following approximate relationships:

[ ] [ ]max E D50,R50 X E MMLS-C �0.30

[ ]X E TRUE , (1)

or, equivalently, approximately max E[D50,R50] �
.0.30 X E[MMLS-C] X E[TRUE] � 0.30

For the power calculations, each test statistic was or-
dered from highest to lowest over the 1,000 data sets,
for each simulation (i.e., for each of the 14 GMs). The
proportions of the 1,000 values that reached or exceeded
specific Z thresholds were tabulated; these proportions
correspond to power levels for those thresholds. We
show these results in the tables, and we show selected
power curves in the figures. In the figures, we also show
power curves for the corresponding D50 and R50 anal-
yses, for comparison. For each different type of GM, we
have arbitrarily selected one or two power curves to
show in the figures.

Results

1. Dominant Models (D20 and D80)

Table 3 shows the simulated ELODs calculated from
data generated under the D20 and D80 models. When
the generating penetrance is 20% (i.e., the GM is D20),
the difference between the MMLS-C and the TRUE is
20% (.7 Z units) for D20 and 13% (1.4 Z units) for
D80. The ELOD from MMLS-C is 2.8, versus 3.5 for
the TRUE statistic (i.e., analyzed under D20). (For com-
parison, note that the ELOD is 3.0 under the dominant
[D50] analysis, vs. 1.8 under the recessive [R50] anal-
ysis.) When the generating penetrance is 80% (D80), the
difference is somewhat greater: ELOD for MMLS-C is
9.2, vs. 10.6 for TRUE. It is interesting to note that
maximizing Z with respect to both the dominance model
and penetrance would have yielded an ELOD of 10.6,
since one would have encompassed the true model. The
correction factor required for maximizing with respect
to both the dominance model and penetrance would
have been ∼.6 (Hodge et al. 1997). In that case, it would
yield an MMLS-C of 10.0, or 0.8 Z units higher than
the statistic resulting when we fix the penetrance at the
arbitrary value of 50%. Thus, in this case, maximizing
Zmax with respect to both the dominant model and pen-
etrance would have yielded a net increase in the ELOD
after correction for maximization over both the domi-
nance model and penetrance. For most other GMs, the
cost in correction for type I error for both penetrance
and the dominance model most likely would have been
greater than the increased ELOD, although we did not
test this.

Table 4 compares the power achieved by the MMLS-
C versus the TRUE statistics, at Z thresholds of 2.0, 3.0,
4.0, and 5.0, and shows the ratio of the MMLS-C power
to the TRUE power (MMLS-C:TRUE ratio). As might
be expected, the maximum power loss occurs when the
AM model is ‘‘farthest’’ from the true model, which, in
this case, means the AM in which the penetrance is far-
thest from the true penetrance, and when there is less
information for linkage in the data to begin with. When
the true model (the GM) is D20, the MMLS-C:TRUE
ratio varies from a low of 50%, at , to a highZ � 4.0
of 79%, at . Note that the lowest MMLS-C:Z � 2.0
TRUE ratio (50%) occurs only when the absolute power
of both MMLS-C and TRUE is also low, well under
50%. When the GM is D80—that is, when there is a
great deal of information in the data to begin with—the
power levels are almost indistinguishable at all four
threshold values that we examined (i.e., ∼1 for both
MMLS-C and TRUE). Figure 1 shows the power curves
for the D20 data.
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Figure 1 Power curves for D50, R50, MMLS-C, and TRUE
analyses of 1,000 data sets generated under the D20 model.

Table 4

Power Necessary to Achieve a Given Z Value, under the TRUE and MMLS-C Models, and MMLS-C:TRUE (M:T) Ratio

MODEL

POWER TO ACHIEVE Z �

2.0 3.0 4.0 5.0

TRUE MMLS-C
M:T
Ratio TRUE MMLS-C

M:T
Ratio TRUE MMLS-C

M:T
Ratio TRUE MMLS-C

M:T
Ratio

Simple Mendelian:
D20 .89 .70 .79 .67 .45 .67 .36 .18 .50 .09 .06 .67
D80 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .99 .99 .99 .98 .99
R20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
R80 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Intermediate:a

.1 .89 .72 .81 .67 .42 .63 .34 .17 .50 .11 .06 .55

.3 .96 .87 .91 .82 .68 .83 .57 .42 .74 .29 .21 .72

.5 1.0 .99 .99 .96 .95 .99 .87 .83 .95 .73 .67 .92

.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .99 .99 1.0
Additive3b

.01 1.0 1.0 1.0 .98 .98 1.0 .92 .92 1.0 .82 .77 .94

.05 .95 .90 .95 .80 .70 .88 .58 .43 .74 .30 .20 .67

.10 .96 .90 .94 .82 .72 .88 .57 .46 .81 .29 .23 .79
Additive2:b

.01 .97 .93 .96 .87 .79 .91 .71 .57 .80 .51 .36 .71

.05 .41 .28 .68 .14 .09 .64 .04 .04 1.0 .01 .01 1.0

.10 .05 .04 .80 .00 .01 ) .0 .0 ) .0 .0 )
a Values shown (i.e., .1, .3 .5, and .8) are f2; f1 is fixed at .9.
b Values shown (i.e., .01, .05, and .10) are gene frequency at the unlinked locus.

2. Recessive Models (R20 and R80)

When the GM is R20, the ELOD (table 3) for the R50
analysis is 10.1, versus 9.9 for MMLS-C, whereas the
ELOD for the TRUE statistic is 10.2. When the GM is
R80, the ELOD is 14.5 for MMLS-C, versus 15.6 for
the TRUE statistic. Figure 2 shows the corresponding
power curves for the data generated under the R20
model. Here, the situation is even more robust than
when the GM is dominant. For the Z thresholds that
we examined, there is little chance of missing a linkage
if one uses MMLS-C (table 4), and the MMLS-C:TRUE
ratio is quite close to 1.0, for all thresholds examined,
for both R20 and R80 GMs.

Note, in figure 2, that the power for TRUE actually
drops below the power for the R50 analysis, at high
(i.e., 110) Z values. We investigated this phenomenon
and discovered that, as the Z values increase, the data
sets contain families with increasing numbers of affected
members. For these data sets, the effective penetrance is
actually higher than the 20% under which they were
generated, and the R50 analysis provides a better de-
scription of the data than does the R20.

For the D20, D80, R20, and R80 models, the mean
difference in ELODS between MMLS-C and TRUE is
1.08, and the range is 0.3–1.4. The mean percentage
difference between MMLS-C and TRUE is 12%.

3. Intermediate Models

For the intermediate model with , the ELODf � 10%2

for the TRUE statistic is 3.5, versus 2.8 for MMLS-C
(table 3). As the penetrance rises and the model becomes
more ‘‘dominant-like,’’ the D50 analysis consistently
outperforms the R50 analysis, and there is little drop in
the ELOD for MMLS-C, compared with that for TRUE.
Since f2 is low, the analysis penetrance is quite different
from the true penetrance. Despite the difference between
the true and analysis penetrances, the ELODs differ by
only 12%: 10.7 for the TRUE (Int80) analysis, versus
9.4 for the MMLS-C. There is even enough information
at such a high penetrance to distinguish the models by
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Figure 2 Power curves for D50, R50, MMLS-C, and TRUE
analyses of 1,000 data sets generated under the R20 model.

Figure 3 Power curves for D50, R50, MMLS-C, and TRUE
analyses of 1,000 data sets generated under the Int30 model.

maximization of f1 and f2 separately. In a model in which
the penetrance is high, finding linkage is not generally
a problem.

Figure 3 shows the power curves for one of the in-
termediate GMs (i.e., Int30). In the worst case, the
MMLS-C:TRUE power ratio is 0.50; this occurs when

, for a threshold of 3.0 (see table 4). However,f � 10%2

note that this is a situation with low power for both test
statistics. For all cases in which the power of TRUE is
x50%, the MMLS-C:TRUE ratio is not !.63.

4. Additive Two-Locus Models

a. ‘‘Additive3’’: three disease alleles required for dis-
ease expression.—These are probably the GMs that are
most unlike either simple Mendelian model used to an-
alyze them. When the disease-allele frequency at the un-
linked locus is .01, the same as at the linked locus—that
is, the gene-frequency combination is (.01,.01)—the
ELOD is 6.5 for MMLS-C, versus 6.8 for TRUE. Ex-
amination of figure 4 suggests that recessive inheritance
provides a good description for this model, at the gene
frequencies used (i.e., .01,.01). For the gene-frequency
combination (.01,.10), the MMLS-C ELOD is 3.9,
whereas under the true model it is 4.3.

Figures 4 and 5 show power curves for these two
GMs. Notice that an especially interesting transforma-
tion occurs in this model when the disease-gene fre-
quency at the unlinked locus becomes 10-fold higher
than that at the linked locus: When the disease-allele
frequencies at the two disease loci are equal (each .01),
the R50 analysis yields higher Z values than does the
D50 analysis (fig. 4). However, when the disease-allele
frequency at the unlinked locus is .10, the highest Z
values occur under the D50 analysis (fig. 5). In between,
when the gene frequency at the unlinked locus is .05,
the dominant and recessive analyses yield results that are
close together (graph not shown, but see table 4). In the

worst case, the power of MMLS-C is only 67% of the
power of TRUE. Again, this occurs when power is low
for both statistics. For all cases in which the power of
TRUE is x50%, the MMLS-C:TRUE ratio is never !.74
(table 4).

b. ‘‘Additive2’’: two disease alleles required for disease
expression.—When two disease alleles are necessary, the
power to detect linkage decreases as the frequency of
the disease allele at the unlinked locus increases. This is
not surprising, since, as the allele frequency at the un-
linked locus increases, more people are affected because
of the action of that locus alone. As the information for
linkage decreases, so does the effect that the model as-
sumptions have on the analysis. However, when the gene
frequencies at the two loci are equal, using MMLS-C
leads to an ELOD that is 87% of the value for the TRUE
analysis—an ELOD of 4.5 for MMLS-C, versus an
ELOD of 5.2 for TRUE. For these additive2 models, the
worst MMLS-C:TRUE power ratio in our simulations
was .64, but when the TRUE power was x50% the
MMLS-C:TRUE ratio was never !.71 (table 4). Figure
6 shows the power curves for one of these models, the
additive2 GM with an unlinked-gene frequency of .1.
Clearly, the power to detect linkage at all, under any
analysis conditions, is relatively low, for this particular
model.

Discussion

We undertook this simulation study to answer two
questions. First, how much does using ‘‘corrected
MMLS’’ (MMLS-C) decrease the power to detect link-
age, compared with the ‘‘gold standard’’ of analyzing
under the true model? Second, how well does MMLS
perform, compared with the TRUE analysis, when the
MOI of the disease is not simple Mendelian but the
assumptions of the AM are simple Mendelian? We have
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Figure 4 Power curves for D50, R50, MMLS-C, and TRUE
analyses of 1,000 datasets generated under the additive3 model. The
unlinked-gene frequency is .01. Note that the R50 model shows more
power than does the D50 model.

Figure 5 Data are as in figure 4, except that the unlinked-gene
frequency is .1. In contrast to figure 4, the D50 model has more power
than does the R50 model.

demonstrated, within the limitations of our simulation
models, that the MMLS-C approach does not substan-
tially decrease the power to detect linkage, compared
with what one would find if one could use the true MOI,
and that assuming a simple Mendelian model works
quite well even when the true model is relatively com-
plex. In addition, we also have provided a baseline for
comparison of other linkage-analysis methods.

In brief, for most of the 14 very different GMs that
we considered, the differences, in ELODs (table 3), be-
tween the TRUE and MMLS-C analyses ranged between
∼.3 (the lower bound; see eq. [1]) and .7. In the three
cases in which this difference was 11.0 (GMs D80, R80,
and Int80), the absolute ELODs were so high (all 19.0)
that power was close to 1.0 for all thresholds examined
(table 4). That is, the relatively larger difference in
ELODs does not translate into practical concern. When
we look at actual power levels for the four thresholds
that we examined, we see that the MMLS-C:TRUE
power ratio was very high (.99–1.00) when the TRUE
power was very high (.99–1.00). When the TRUE power
was x.75, the MMLS-C:TRUE ratio ranged from .79
upward. When the TRUE power was .50–.75, the
MMLS-C:TRUE ratio dropped as low as .63 for one
case (Int10 at threshold of 3.0) and .67 for another (D20
at threshold of 3.0), but otherwise the MMLS-C:TRUE
ratio was 1.70. The only times when the MMLS-C:
TRUE ratio fell below those values was when the ab-
solute power of TRUE was also low, !.50.

Note that, by comparing the MMLS-C analysis with
the true analysis, we are putting the MMLS approach
in the worst possible light. The Z value from the TRUE
analysis, or ‘‘gold standard,’’ represents an upper limit,
and presumably no other analysis can do better than

that, on average. In fact, this ‘‘upper limit’’ cannot, in
general, actually be achieved when we do not know the
true complex MOI. That is, this gold standard is not
generally achievable in actual practice, since, by defi-
nition in these complex diseases, we do not know the
true MOI. We are in the process of evaluating the ques-
tion of when and under what conditions other analysis
methods may have linkage-detection power that is equal
to—or greater than—that of MMLS-C.

We have demonstrated that this approach is robust
and has linkage-detection power that is often close to
that of the TRUE model. This is the case not only when
the true model is dominant or recessive—including the
case in which there is reduced penetrance—but also for
several models more complex than the dominant or re-
cessive (see below). The correction for multiple testing
(i..e., .3) is usually small, compared with the difference
between the ELODs for the dominant and recessive mod-
els, even when the GM is D20. If the GM is recessive,
the difference in power between the dominant and re-
cessive assumptions dwarfs the information lost by cor-
rection for multiple testing.

Although this also was true of the intermediate model,
we note that, when the homozygote penetrance is high
(90%) and the heterozygote penetrance is quite low
(10%), there is very little difference between assuming
dominant and assuming recessive inheritance. In fact,
the power to detect linkage at all, even when one assumes
the true model, is low. (In work in progress, we have
noted that the Z drops dramatically when the homo-
zygote penetrance is high compared with the heterozy-
gote penetrance, even when the data are analyzed at the
generating penetrance values.)

One especially interesting observation sheds light on
what factors are important in a locus-by-locus linkage
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Figure 6 Power curves for D50, R50, MMLS-C, and TRUE
analyses of 1,000 data sets generated under the additive2 model, when
the unlinked-gene frequency is .1.

scan. In our results with the additive3 model, we found
that the gene frequency at the unlinked locus determined
which assumed MOI at the linked locus led to the higher
Z value. The reason for this dependence is as follows:
If the gene frequency at the unlinked locus is low, then
it is more probable that all individuals will have one
disease allele, rather than two, at that locus. If so, then
there must be two disease alleles at the linked locus, in
order for an individual to be affected. Similarly, if the
gene frequency at the unlinked locus is high, then there
is a higher probability that an affected individual will
be homozygous for the disease allele at the unlinked
locus, and then there need be only one allele at the linked
locus, in order for the individual to manifest the disease.
Thus, in an additive-type model such as we have ex-
amined, the apparent MOI at the locus linked to the
marker can change in response to what is going on at
other loci.

This last point has interesting implications for linkage
analysis of complex diseases. In an additive model, the
apparent MOI at a specific locus can change in response
to changes in the gene frequency at other loci that con-
tribute to the disease phenotype. The results of a seg-
regation analysis in a situation such as this might not
be very useful (also see below). In addition, the MOI
for different populations could vary.

We also found it interesting that, for the additive3
model, when the true MOI was used to calculate the Z
value, it led to a Zmax only slightly higher than the higher
of the two Z values calculated under the two simple
AMs (mean difference .55, or 8%). This was true despite
the fact that the GMs were not simple Mendelian mod-
els. This also suggests that the dominant and recessive
models, despite their simplicity, provide a reasonable ap-

proximation when we are using linkage analysis for a
locus-by-locus search for disease genes. It is, in fact, tor-
tuous to imagine a genetic model in which the
inheritance at that locus would not approximate dom-
inant or recessive inheritance, provided that the linked
locus has a specific allele or alleles that affect the ex-
pression of the disease. The effect of the allele may be
too small to be detected by linkage analysis or may be
affected by other loci, but the allele still must be
transmitted.

In some of the models that we examined—for ex-
ample, the additive2 model with gene frequency .01 for
the linked locus but .1 for the unlinked locus—linkage
was simply difficult to detect. This difficulty was inherent
in the GM, and this difficulty would also hold for any
AM. For example, in the additive2 example just men-
tioned, the unlinked locus would have a greater influence
on the disease than the linked locus does, because of its
10-fold–higher gene frequency. However, in a genome
search the unlinked locus in this example would be more
easily discovered.

The MMLS approach that we have tested here is sim-
ple and is predicated on the notion that, in linkage anal-
ysis, when it is done one locus at a time, the MOI at
the locus being tested—not the inheritance of the disease
per se—is the critical assumption. Thus, this study sug-
gests that parameters derived from a segregation analysis
should be applied with caution in a subsequent linkage
analysis. Dizier et al. (1996) reported that, in certain
complex models, the ASP method appeared to have more
power to detect linkage than did Z values. However,
Dizier et al. used parameters derived from a segregation
analysis. As a result, although 11 of the models they
investigated found that Z values had higher power to
detect linkage than was seen in the ASP method, in three
of the models the ASP method had higher power. Closer
examination of the models used by Dizier et al. shows
that, for those two models in which the Z method was
weaker than the ASP approach, the MOI at the linked
locus was recessive although the segregation analysis
suggested dominant inheritance of the disease. Had Di-
zier et al. analyzed the data in the manner that we have
advocated here—that is, by means of both a dominant
and a recessive MOI—the Z method would have proved
more powerful in all cases (Durner et al. 1997), thus
undermining Dizier et al.’s conclusion that there are cir-
cumstances in which ASPs have more power to detect
linkage than does Z analysis.

In previously published work, we have shown, via
simulations, that, when one maximizes the Z over the
dominance model, .3 represents a reasonable approxi-
mate correction factor; that is, one should decrease the
observed maximized Zmax by .3, to allow for having per-
formed multiple tests. This value of .3 represents a con-
servative value. Although the correction factor was de-
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rived for dominant and recessive models, we know that
there is no information about MOI if there is no linkage.
Thus, in the absence of linkage, type I error is approx-
imately the same no matter what MOI is assumed (Wil-
liamson and Amos 1990; Hodge and Elston 1994).
Therefore, the MOI used to analyze the data should not
affect the type I error or our cutoff threshold. Also, the
accumulating evidence is that dominant and recessive
models with reduced penetrance provide good approx-
imations of the effect of other loci. This suggests that .3
will be a conservative correction factor for performance
of two Z analyses, no matter what the true MOI, al-
though we cannot yet prove that.

When we originally derived the correction factor for
multiple testing (Hodge et al. 1997), we found that the
two-sided x2 provided a reasonable approximation for
derivation of the correction factor. In that work, our
simulations only went up to Zmax values of 3.0. In the
current work, we have much higher Zmax values, so we
have calculated an approximate correction factor for
higher Zmax, based on going from a one-sided to a two-
sided a. For , this approximate correctionZ X 13.9max

factor is .293, very close to the .284 found for a
. In any case, we used a correction factor ofZ � 3.0max

.3, which is slightly more conservative.
If one also maximized over penetrance, an additional

.3 Z unit (conservatively) would need to be added to
the correction factor. However, in the current work, we
fixed the assumed penetrance at an arbitrary 50%, so
that we needed to correct only for the dominance-model
maximization. We did not maximize over penetrance,
because we wanted to see whether our approach led to
good power to detect linkage while keeping the number
of separate analyses to a minimum (i.e., two). Our find-
ings again confirmed that the wrong penetrance as-
sumptions alone had relatively small effects on the mag-
nitude of the Z value (Clerget-Darpoux et al. 1986;
Greenberg 1989). However, there are situations (e.g., the
D20 and R20 models) in which maximization with re-
spect to penetrance would increase power more than the
power loss due to type I error. As we have noted above,
for most GMs that we examined, maximizing the pen-
etrance would not have increased the ELODs by more
than would have been lost by additional correction for
multiple testing.

We used two-point analyses for these calculations, but,
in work in preparation, the results also apply equally to
multipoint analysis. We chose to use two-point analyses
because they require significantly less computation time
and because the conclusions for multipoint analysis are
identical to those for two-point analyses, in all cases that
we have examined so far. Also, two-point analyses are
often best suited for initial genome screens.

In the absence of any knowledge about the inheritance

of the disease at a locus, one could either make as-
sumptions about the MOI, in order to carry out a Z
analysis, or use ‘‘nonparametric’’ affecteds-only meth-
ods, which may not be as powerful and do not use all
the available data (Hodge 1998). As demonstrated by
Knapp et al. (1994) and Whittemore (1996), although
the affecteds-only methods may be free of explicit mode-
of-inheritance assumptions, the characteristics of the
tests have statistical properties that are similar to the
properties of maximum-likelihood tests under specific
genetic models. For example, Knapp et al. demonstrated
that one ASP test, the Mean Test, has statistical prop-
erties identical to those of a Z analysis assuming reces-
sive inheritance.

Like all simulation-based studies, this one looked at
some specific models and situations. Even though we
confined the GMs to one-locus and two-locus models,
the range of models was large. Even more important,
the pattern that emerged, first observed with the work
on two-locus epistatic models (Greenberg and Hodge
1989; Vieland et al. 1992), is that it is the MOI at the
linked trait locus that is important in a genome search.
At that locus, either one or both alleles contribute to
trait expression, making the assumption of dominant or
recessive inheritance quite robust for linkage detection.
Also, of course, the absolute power levels and ELODs
will vary with sample size and other factors. However
the relative power levels and ELODs reported here
should have wide application.
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